If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+24t+11=0
a = 4; b = 24; c = +11;
Δ = b2-4ac
Δ = 242-4·4·11
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-20}{2*4}=\frac{-44}{8} =-5+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+20}{2*4}=\frac{-4}{8} =-1/2 $
| F(2)=2x^2-7x-15 | | 8/x2-4+13/X+2=x-4/2-x | | 3x/2=5(x=2) | | F(x)=6x^2+7x-15 | | 9x-13x=6x+2 | | F(x)=6x^2-7x-15 | | 1+4x=9x-9 | | 1+4x=-9x-9 | | 19/40=-3/8+x | | 36x-x^2-225=0 | | -3/2x=18/25 | | -4x+12=2 | | 5t-3-t+8=2t+7 | | 3+1.5y=y-3 | | 7x-(3x+4)=5x-37 | | f(4)=24^3-5 | | 7+6n=8n+7 | | 5(3+2x)=70 | | 1.25+0.625y=y-1 | | x=12x+44 | | -2x^2+5x+(x+1)^2=11 | | 2x-1x+4=0 | | X+84x=x+14 | | -9u=7.2 | | -18n+18=-17n-10 | | 4/5w+4=9/5 | | 15x=-20x+17 | | m-1.4=3.7555 | | x(-4)=14 | | 3x−9x=−10 | | 3x−9x^2=-10 | | 4z-16z=96 |